正確な湿度計測に役立つ熱力学の基礎知識

湿度は温度と共に非常に身近な物理量ですが、湿度を高精度に測定することは難しく、湿度計測機器の知識・技術は勿論のこと、湿度に関する知識を深める必要があります。

そこで、本稿では、湿度の基礎知識について解説します。

飽和水蒸気圧・絶対湿度・相対湿度

水蒸気圧 e とは大気中に存在する水蒸気の分圧であり、 大気中に存在することができる最大の水蒸気圧を飽和水蒸 気圧 e_s と言います。

水蒸気(気相)と水(液相)の関係は熱力学の相平衡時の関係式であるクラジウス クラペイロンの式に従い、次の式で示すことができます。

$$\frac{de_S}{dT} = \frac{\lambda}{T(V_V - V_L)} \quad \cdots \cdot \cdot (A)$$

ここで、Tは温度、 は蒸発の潜熱、 V_i , V_i は単位質量当りの水蒸気と水の体積です。更に熱力学に従い理想気体の方程式を適用して展開すると、飽和水蒸気圧 es は次の式で表すことができます。

$$e_S = A \exp\left(\frac{B}{T}\right) \quad \cdots \quad (B)$$

ここで、A=5278, B=1.162*109の定数です。

すなわち、同じ大気中であっても、より高い温度ではより多くの水蒸気を大気中に含むことができます。各温度における飽和水蒸気圧 es (Pa, mmHg)を表 A に示します。

大気中の水分量を分圧ではなく、 $1m^3$ 当りの質量(g)で表す水蒸気量を絶対湿度 $D(g/m^3)$ と言います。

大気中の水蒸気圧 e を表す場合、飽和水蒸気圧 esに対する割合として表す量を相対湿度 H(%RH)と言います。一般に湿度と言われている量は相対湿度 H のことを言います。相対湿度 H は次の式により定義されます。

$$H = \frac{e}{e_s} *100(\% RH) \quad \cdots \quad (C)$$

次に、相対湿度 Hと絶対湿度 Dの関係を導きます。熱力学の理想気体においては次の式が成立します。

$$eV = \frac{m}{M}RT \quad \cdots \cdots (D)$$

ここで、m は気体の質量(g)、M は分子量(18)、R は定数(8.3144J/molK)です。

よって、温度 T、水蒸気圧 eの気体の絶対湿度 Dは

$$D = \frac{m}{V} = \frac{eM}{RT} \quad \cdots (E)$$

となります。

飽和水蒸気圧 e_s に対応する飽和水蒸気量を D_s とすると、

$$D_S = \frac{m}{V} = \frac{e_S M}{RT} \quad \cdots \quad (F)$$

が成立するので、絶対湿度 Dと相対湿度 Hの関係は

$$H = \frac{D}{D_s} *100 \quad \cdots \quad (G)$$

となります。

結露・露点・霜点

建物や電子機器が結露状態に長くさらされると、カビが生えたり、電子部品の特性を劣化させたり、更には絶縁低下を招いたりと、多くの問題が生じます。では、何故、結露するかと言えば、雨などの天候状態により大気中に含まれる水蒸気圧 eが増加し飽和水蒸気圧 esに達すると、それ以上の水蒸気を大気中に保持することができなくなり、水分となって析出することによります。また、温度変化によっても結露が発生します。例えば、日中 25 ,50%RH で大気が乾いた状態であるとします。この時の水蒸気圧は表 Aと式(C)より、e = 11.88m H g となります。そして、水蒸気圧が一定のまま、夜中に温度が 10 以下まで低下すると、その時の飽和水蒸気圧は表 Aにより、e e < 9.21m H g と

なるので、 $e > e_s$ となります。すなわち、結露状態になり

ます。一日の気温変動による結露現象の模式図を図 A に示します。冬季に住宅の内壁やガラスに露が付くことが頻繁に見られますが、これも温度変化によって説明することができます

結露状態でない気体を冷却していくとある温度で露が付きますが、この温度を露点 T_D と言います。すなわち、露点 T_D とはある気体の水蒸気圧が飽和水蒸気圧 e_S に達したときの温度です。すなわち、露点 T_D の水蒸気圧 e は

$$e = A \exp\left(\frac{B}{T_D}\right) \cdots (H)$$

となります。

したがって、温度 $T_{\mathcal{D}}$ の気体の相対湿度 Hは

$$H = \exp B(1/T_D - 1/T) * 100 \quad \cdots \quad (I)$$

となり、露点 T_D を求めることにより相対湿度 Hを知ることができます。

また、逆に、温度 T、相対湿度 Hより露点 T_D を次式により求めることができます。

$$T_D = \frac{1}{\ln(H/100) + 1/T} \quad \cdots \quad (J)$$

また、温度が-20 以下になると露ではなく霜が現れ、この

時の温度を霜点と言います。すなわち、露点とは水蒸気と 水の平衡状態を示していますが、霜点とは水蒸気と氷の平 衡状態を示しています。

水分量の体積百分率(V%)と露点計

 $1 \mod 0$ 気体について考えると、水蒸気圧 e の体積は

$$V_{H_2O} = \frac{RT}{e} \quad \cdots \cdots (K)$$

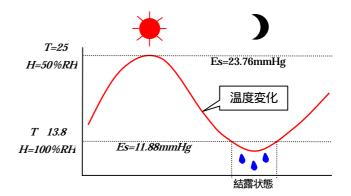
となります。共存する他の気体、例えば、空気の体積は同 様にして

$$V_{Air} = \frac{RT}{e_{Air}} \quad \cdots (L)$$

となります。よって、水分量の体積百分率 (V%) は

$$R_{VM} = \frac{V_{H_2O}}{V_{Air} + V_{H_2O}} *100 = \frac{e}{e_{Air} + e} *100(\%)$$

$$\approx \frac{A}{760} \exp\left(\frac{B}{T_D}\right) * 100(\%) \quad \cdots \quad (M)$$


となります。露点 T_D と水分量 R_{VM} の関係を表 B に示します。(M)式から導いた理論値と実際値はほぼ一致します。この式の意味することは重要であり、露点 T_D のみを知れば水分量 R_{VM} を知ることができることを示しています。

半導体製造プロセスにおいて、プロセス中に混入する微量水分を管理する必要があります。そこで、ガスクロマトグラフィーなどにより水分量 R_{VM} を直接、測定する代わりに、露点計により微量水分量を管理することができます。また、数 ppm の微量水分量を管理するには-70 以下の非常に低い露点を測定する必要があることが分かります。

表 A 各温度における水蒸気圧

	水蒸気圧	E(mmHg)		水蒸気圧(mmHg)			
温度()	理論値	実際値	温度()	理論値	実際値		
-10	2.262	2.1458	16	13.734	13.634		
-8	2.632	2.5101	18	15.569	15.478		
-6	3.055	2.9285	20	17.619	17.537		
-4	3.538	3.4079	22	19.905	19.831		
-2	4.088	3.9557	24	22.451	22.384		
0	4.715	4.5804	26	25.282	25.219		
2	5.426	5.2909	28	28.425	28.361		
4	6.231	6.0973	30	31.909	31.839		
6	7.142	7.0106	32	35.766	35.682		
8	8.170	8.0425	34	40.030	39.922		
10	9.329	9.2062	36	44.737	44.591		
12	10.632	10.516	38	49.925	49.726		
14	12.095	11.986	40	55.638	55.364		

(理論値とは(A)式より導かれた値で、実際値とは JIS Z8806 に記載されている値であり、比較的良く一致しています)

図A 一日の気温変動による結露現象の模式図

図 B 露点 - 相対湿度 - 絶対湿度 - 水分量の関係

	理 論 値						実際値							
露点()	水蒸気圧	相対湿	度(%RH)	絶対湿度	₹(mg/L)	水分量	₽RVM	露点()	水蒸気圧	対湿度(%RI	H)	絶対湿度	水分量	 RVM
	(mmHg)	温度20	温度30	温度0	温度20	Vol%	ppm		(mmHg)	温度20	温度30	温度0	Vol%	ppm
0	4.715	26.76	14.78	4.917	4.582	0.6165	6165	0	4.581	26.132	14.392	4.845	0.602	6020
1	5.059	28.71	15.85		4.916	0.6613	6613	1	4.925	28.095	15.473	5.190	0.648	6480
2	5.426	30.79	17.00	5.659	5.272	0.7088	7088	2	5.292	30.188	16.626	5.556	0.696	6960
3	5.816	33.01	18.23		5.652	0.7594	7594	3	5.681	32.407	17.848		0.747	7470
4	6.231	35.37	19.53		6.055	0.8132	8132	4	6.098	34.786			0.802	8020
5	6.673	37.87	20.91	6.959	6.484	0.8704	8704	5	6.540	37.307	20.547	6.792	0.860	8600
6	7.142	40.54	22.38		6.940	0.9310	9310	6	7.010	39.989		7.255	0.922	9220
7	7.641	43.37	23.95	7.969	7.425	0.9954	9954	7	7.510	42.841	23.594	7.745	0.987	9870
8	8.170	46.37	25.61	8.521	7.940	1.0636	10636	8	8.042	45.876		8.264	1.058	10580
9	8.732	49.56	27.37		8.486	1.1360	11360	9	8.606	49.093		8.812	1.132	11320
10	9.329	52.95	29.24		9.065	1.2126	12126	10	9.205	52.510		9.392	1.211	12110
11	9.961	56.54	31.22	10.389	9.680	1.2937	12937	11	9.840	56.132	30.914	10.004	1.295	12950
12	10.632	60.34	33.32	11.088	10.332	1.3796	13796	12	10.510	59.954	33.019		1.383	13830
13	11.342	64.38	35.55		11.022	1.4705	14705	13	11.230	64.062	35.281	11.182	1.477	14770
14	12.095	68.65	37.90		11.753	1.5665	15665	14	11.980	68.340		12.057	1.577	15770
15	12.891	73.17	40.40		12.527	1.6679	16679	15	12.780	72.904	40.151	12.817	1.682	16820
16		77.95			13.347	1.7751	17751	16	13.630	77.752		13.619	1.793	17930
17	14.626	83.01	45.84		14.213	1.8882	18882	17	14.530	82.886		14.464	1.911	19110
18	15.569	88.37	48.79		15.130	2.0075	20075	18	15.470	88.249		15.354	2.036	20360
19	16.566	94.02	51.92		16.098	2.1332	21332	19	16.470	93.953		16.291	2.168	21680
20	17.619	100.00	55.22	18.375	17.121	2.3183	23183	20	17.530	100.000	55.074	17.277	2.307	23070
-10	2.262	12.84	7.09		2.198	0.2968	2968							
-20	1.024	5.81	3.21	1.068	0.995	0.1346	1346							
-30	0.435	2.47	1.36		0.422	0.0571	571							
-40	0.171	0.97	0.54		0.166	0.0225	225							
-50	0.062	0.35	0.19		0.060	0.0082	82							
-60	0.020	0.12	0.06		0.020	0.0027	27							
-70	0.006	0.03	0.02		0.006	0.0008	8							
-80	0.002	0.01	0.00		0.002	0.0002	2							
-90	0.000	0.00	0.00		0.000	0.0000	0							
-100	0.000	0.00	0.00	0.000	0.000	0.0000	0							